

ALLEGATO 2

DATI DI INPUT DEL MODELLO DI CALCOLO

Traffico aereo

Al fine di caratterizzare ila base dati di riferimento del modello dai dati forniti dal gestore aeroportuale si è appurato che le flotte con maggior frequenza di impiego risultano essere:

- gli Airbus A320 (A319, e A320 e A321), oggi distinguibili, a seconda della motorizzazione, in CEO/Current Engine Option, quelli più vecchi, e NEO/New Engine Option, quelli di più recente fabbricazione che montano motori più performanti anche sotto il profilo delle emissioni sonore;
- ✓ i Boeing 737 (soprattutto737-800), anche in questo caso distinguibili in vecchi modelli, in numero ancora prevalente, e nuovi modelli.

La somma delle due flotte sopraindicate costituisce oltre il 60% del volato mentre l'Aviazione Generale rappresenta invece solo il 3,2% del totale.

Determinata la composizione della flotta, si è costruito lo scenario giornaliero, individuando per ogni modello di aeromobile:

- ✓ il tipo di operazione (arrivo, partenza);
- √ il profilo verticale e "stage"; quest'ultimo è un parametro utilizzato dal software per caratterizzare il velivolo a seconda del peso. Il modello assume che gli aeromobili abbiano un peso fisso nelle operazioni di arrivo (stage 1) e che abbiano pesi variabili, in un set di una o più classi, nelle operazioni di decollo;
- √ la pista in uso;
- ✓ la rotta seguita (SID e STAR);
- ✓ il numero di operazioni diurne (06:00-23:00) e notturne (00:00-06:00; 23:00-24:00) per ciascuna combinazione individuata nei punti precedenti.

Nella sottostante tabella si riporta la statistica della suddivisione per stage delle partenze degli aeromobili di Aviazione Commerciale che presentano nello scenario delle tre settimane una percentuale di impiego più elevata.

Aeromobile	Stage	OPS	%
A320 CEO family	1	21	1,2%
	2	0	0,0%
	3	106	6,0%
	4	949	53,3%
	5	705	39,6%
A320 NEO family	4	593	82,8%
	5	113	15,8%
	6	10	1,4%
B737 family	2	1	0,1%
	3	238	16,0%
	4	608	40,8%
	5	255	17,1%
	6	349	23,4%
	7	38	2,6%

Aeromobile	Stage	OPS	%
	1	1	0,6%
A330	6	20	12,0%
	7	145	87,3%
4250	8	25	25,3%
A350 —	9	74	74,7%
	7	1	1,3%
B747	8	2	2,6%
	9	74	96,1%
	6	3	3,9%
B767	7	67	88,2%
	8	6	7,9%
	6	20	15,3%
B777	8	17	13,0%
	9	94	71,8%
	7	8	4,3%
B787	8	112	60,5%
	9	65	35,1%
EMB 470 400 family	3	15	6,1%
EMB 170-190 family	4	230	93,9%

Allegato 2 Tabella 1, Suddivisione per stage del traffico medio 21 giorni (AC)

Piste e Rotte

In riferimento alle rotte di decollo inputate nel modello di calcolo, così come riportate nella Fig 3.1 della Relazione Tecnica, nelle coppie di figure successive, per ciascuna SID allo studio, sono rispettivamente raffigurate la mappa di concentrazione delle battute ADS-B (con cui si è riallineata la rotta nominale) e l'elaborazione del modello di dispersione sul transetto ritenuto rappresentativo.

Figura 1, Mappa di concentrazione delle battute ADS-B per SID su track 356

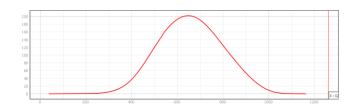


Figura 2, Campana di dispersione utilizzata per la simulazione di SID su track 356

Figura 3, Mappa di concentrazione delle battute ADS-B per SID su track 069

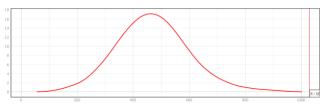


Figura 4, Campana di dispersione utilizzata per la simulazione di SID su track 069

Figura 5, Mappa di concentrazione delle battute ADS-B per SID su RDL 036

Figura 6, Campana di dispersione utilizzata per la simulazione di SID su RDL 036

Figura 7, Mappa di concentrazione delle battute ADS-B per SID su RDL 318

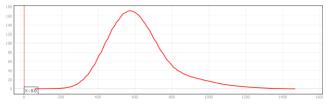


Figura 8, Campana di dispersione utilizzata per la simulazione di SID su RDL 318

Figura 9, Mappa di concentrazione delle battute ADS-B per SID su RDL 308

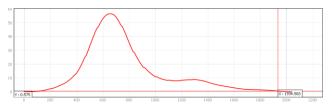


Figura 10, Campana di dispersione utilizzata per la simulazione di SID su RDL 308

Figura 11, Mappa di concentrazione delle battute ADS-B per SID su RDL 278

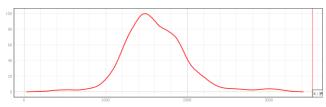


Figura 12, Campana di dispersione utilizzata per la simulazione di SID su RDL 278

Figura 13, Mappa di concentrazione delle battute ADS-B per SID su FARAK 5Y

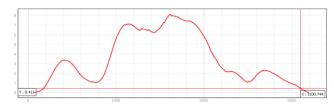


Figura 14, Campana di dispersione utilizzata per la simulazione di SID su FARAK 5Y

Figura 15, Mappa di concentrazione delle battute ADS-B per SID su SRN 6W

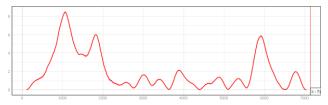


Figura 16, Campana di dispersione utilizzata per la simulazione di SID su SRN 6W

Nelle seguenti tabelle, distinte per la pista in uso, si riportano i parametri utilizzati nella simulazione, indicando per ciascuna traccia (RDL-TRACK) la distanza dalla rotta nominale (LATERAL (NM)) e la suddivisione percentuale del volato (%) delle sotto tracce (nominale (0), di sinistra (sn/sn1 e sn2) e destra (ds/ds1 e ds2)).

RDL-TRACK		LATERAL (NM)	%
track 356	sn	-0,17	0,09
	0	0,00	0,72
	ds	0,17	0,19
track 069	sn	-0,16	0,20
	0	0,00	0,72
	ds	0,16	0,08
RDL 036	sn2	-0,47	0,10
	sn1	-0,23	0,30
	0	0,00	0,40
	ds1	0,23	0,15
	ds2	0,47	0,05

Allegato 2 Tabella 3, Parametri di input delle sottotracce Decolli da pista 35R

RDL-TRACK		LATERAL (NM)	%
RDL 318	sn2	-0,32	0,01
	sn1	-0,16	0,56
	0	0,00	0,36
	ds1	0,16	0,06
	ds2	0,32	0,01
	sn2	-0,41	0,16
RDL 308	sn1	-0,21	0,61
	0	0,00	0,14
	ds1	0,21	0,08
	ds2	0,41	0,01
RDL 278	sn2	-0,46	0,06
	sn1	-0,23	0,40
	0	0,00	0,39
	ds1	0,23	0,12
	ds2	0,46	0,03

Allegato 2 Tabella 4, Parametri di input delle sotto tracce Decolli da pista 35L

RDL-TRACK		LATERAL (NM)	%
FARAK 5Y	sn2	-0,55	0,09
	sn1	-0,28	0,18
	0	0,00	0,35
	ds1	0,28	0,28
	ds2	0,55	0,10
SRN 6W	sn2	-1,40	0,21
	sn1	-0,70	0,07
	0	0,00	0,10
	ds1	0,70	0,21
	ds2	1,40	0,41

Allegato 2 Tabella 5, Parametri di input delle sotto tracce Decolli da piste 17L/R